View Project

Title:

??

Abstract:

??

Comments:

??

Actions

Suggested Topics

Suggested Resources

Uses abstract to search the content of resources available in Topics. Sorted by relevance.

# Title Author Topic Medium Score
1 What is Natural Language Processing? bogdani 112 resource 20.40
2 Is it a boy or a girl? An introduction to Machine Learning bogdani 711 resource 20.26
3 Does the h index have predictive power? Jorge E. Hirsch 999 paper 20.05
4 Supervised similarity: Learning symmetric relations from duplicate question data Matthew Honnibal 133 tutorial 19.60
5 Can neural machine translation do simultaneous translation? Kyunghyun Cho, Masha Esipova 999 paper 19.50
6 Words or Characters? Fine-grained Gating for Reading Comprehension Zhilin Yang, Bhuwan Dhingra, Ye Yuan, Junjie Hu, William W Cohen, Ruslan Salakhutdinov 999 paper 19.42
7 What Do Recurrent Neural Network Grammars Learn About Syntax? Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng Kong, Chris Dyer, Graham Neubig, Noah A Smith 999 paper 19.42
8 Do Multi-Sense Embeddings Improve Natural Language Understanding? Jiwei Li, Dan Jurafsky 999 paper 19.42
9 Do Deep Convolutional Nets Really Need to be Deep and Convolutional? Gregor Urban, Krzysztof J Geras, Samira Ebrahimi Kahou, Ozlem Aslan, Shengjie Wang, Rich Caruana, Abdelrahman Mohamed, Matthai Philipose, Matt Richardson 999 paper 19.38
10 What to talk about and how? Selective Generation using LSTMs with Coarse-to-Fine Alignment Hongyuan Mei, Mohit Bansal, Matthew R. Walter 999 paper 19.38
11 When are tree structures necessary for deep learning of representations? Jiwei Li, Minh-Thang Luong, Dan Jurafsky, Eudard Hovy 999 paper 19.38
12 Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings Tolga Bolukbasi, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, Adam Kalai 999 paper 19.34
13 Is language evolution grinding to a halt?: Exploring the life and death of words in English fiction Eitan Adam Pechenick, Christopher M. Danforth, Peter Sheridan Dodds 999 paper 19.30
14 Is science becoming more interdisciplinary? Measuring and mapping six research fields over time Alan L. Porter, Ismael Rafols 999 paper 19.16
15 Vanilla Neural Network Goku Mohandas 711 tutorial 18.01
16 Convolutional Neural Networks Goku Mohandas 744 tutorial 18.01
17 The e-Index, Complementing the h-Index for Excess Citations Chun-Ting Zhang 999 paper 17.72
18 Step Forward Feature Selection: A Practical Example in Python Matthew Mayo 262 resource 17.52
19 Linear Regression Goku Mohandas 102 tutorial 17.50
20 Image-to-Image Translation in Tensorflow Christopher Hesse 731 tutorial 16.79
21 Logistic Regression Goku Mohandas 516 tutorial 16.41
22 How to Escape Saddle Points Efficiently Chi Jin*, Rong Ge, Praneeth Netrapalli , Sham M. Kakade, Michael I. Jordan 187 resource 16.16
23 Do Altmetrics Work? Twitter and Ten Other Social Web Services Mike Thelwall, Stefanie Haustein, Vincent Larivière, Cassidy R. Sugimoto 999 paper 16.02
24 Implementing a neural Part-of-Speech tagger Jonathan K. Kummerfeld 215 resource 15.87
25 Character-level text classification: CNN Puya Sharif 744 tutorial 15.75
26 State-of-the-art neural coreference resolution for chatbots Thomas Wolf 756 tutorial 15.25
27 Quadratic entropy and analysis of diversity C. R. Rao 999 paper 15.25
28 How do we capture structure in relational data? Matthew Das Sarma 233 resource 15.02
29 The h’-Index, Effectively Improving the h-Index Based on the Citation Distribution Chun-Ting Zhang 999 paper 14.01
30 Deep Learning and the Future of AI Yann LeCun 811 lecture 13.87
31 Theano Tutorial Colin Raffel 731 tutorial 13.77
32 An index to quantify an individual’s scientific research output that takes into account the effect of multiple coauthorship J. E. Hirsch 999 paper 13.62
33 Clustering text documents using k-means F Pdregosa 57 resource 13.31
34 Recurrent neural networks and LSTM tutorial in Python and TensorFlow Author Unknown 742 tutorial 13.08
35 7 types of Artificial Neural Networks for Natural Language Processing Data Monsters 711 resource 12.97
36 Convolutional Neural Networks Tutorial in TensorFlow Andy Thomas 744 tutorial 12.72
37 Deep learning tutorial on Caffe technology : basic commands, Python and C++ code Christopher Bourez 731 tutorial 12.64
38 Building a Logistic Regression in Python, Step by Step Susan Li 516 tutorial 12.64
39 Building A Logistic Regression in Python, Step by Step Susan Li 516 resource 12.64
40 Deep Learning chatbots analysis - whats the actual tech behind them? Przemyslaw 756 tutorial 12.33
41 Diversity and network coherence as indicators of interdisciplinarity: case studies in bionanoscience Ismael Rafols, Martin Meyer 999 paper 12.29
42 37 Reasons why your Neural Network is not working Slav Ivanov 713 tutorial 12.04
43 Calculus for Deep Learning Various Authors 711 resource 11.76
44 TensorFlow Dataset API tutorial – build high performance data pipelines Andy 731 resource 11.76
45 A Good Part-of-Speech Tagger in about 200 Lines of Python Matthew Honnibal 231 tutorial 11.76
46 How To Understand Derivatives: The Product, Power & Chain Rules Kalid 101 tutorial 11.56
47 Python TensorFlow Tutorial – Build a Neural Network Andy Thomas 731 tutorial 10.35
48 Markov Chain Monte Carlo (MCMC) Author Unknown 221 resource 9.47
49 TensorFlow Tutorial For Beginners Karlijn Willems 731 tutorial 8.68
50 TensorFlow Tutorial For Beginners Karlijn Willems 731 tutorial 8.68
51 TensorFlow Tutorial For Beginners Karlijn Willems 731 resource 8.68
52 SippyCup Unit 1: Natural language arithmetic Bill MacCartney 365 tutorial 6.65
53 Train Neural Machine Translation Models with Sockeye Felix Hieber, Tobias Domhan 753 tutorial 5.88
54 The Traveling Salesperson Problem Author Unknown 104 tutorial 5.66
55 Recurrent Neural Networks Stephen Grossberg 741 paper 4.70