View Project

Title:

test

Abstract:

this is a test

Comments:

test test

Actions

Login to edit or delete this resource.

Suggested Topics (up to Top 50)

Suggested Resources

Uses abstract to search the content of resources available in Topics. Sorted by relevance.

# Title Author Topic Medium Score
1 Bertrand and Russell Ben King 362 naclo 4.85
2 LSTMs for Human Activity Recognition Guillaume Chevalier 742 library 4.83
3 The Confusion Matrix in statistical tests Eli Bendersky 974 resource 4.83
4 Introduction to Bayesian Thinking: from Bayes Theorem to Bayes Networks Felipe Sanchez 171 resource 4.82
5 Intro to Data Science Part 3: Data Analysis Tiffany Souterre 974 resource 4.82
6 Two-sample t-test and robustness John Cook 999 resource 4.81
7 A Corpus and Cloze Evaluation for Deeper Understanding of Commonsense Stories Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, ... 999 paper 4.80
8 Minibatch Metropolis-Hastings Daniel Seita 107 tutorial 4.80
9 Cross-validation for detecting and preventing overfitting Andrew W. Moore 107 tutorial 4.80
10 Information Retrieval 8 David Smith 61 lecture 4.79
11 Machine Learning with scikitlearn Sebastian Raschka, Andreas Mueller 134 tutorial 4.79
12 Features and hypothesis tests David Bamman 543 lecture 4.78
13 Multi Label Text Classification with Scikit-Learn Susan Li 542 resource 4.78
14 cs231n notes: Classification Andrej Karpathy 511 tutorial 4.78
15 Prepositional Phrase Attachment 3 Dragomir Radev 284 lecture 4.78
16 Experimentation Chris Dyer 107 lecture 4.78
17 Multi Label Text Classification with Scikit-Learn Susan Li 542 resource 4.78
18 Prepositional Phrase Attachment 3 Dragomir Radev 284 lecture 4.77
19 An Introduction to Machine Learning in Python Sebastian Raschka 134 tutorial 4.77
20 Confidence Intervals and Hypothesis Testing Roger Levy tutorial 4.77
21 How to Unit Test Machine Learning Code Chase Roberts 731 tutorial 4.77
22 Exploring and Denoising Your Data Set Terence Parr, Jeremy Howard 112 resource 4.77
23 30 Questions to test a data scientist on Natural Language Processing [Solution: Skilltest – NLP] Shivam Bansal 112 resource 4.77
24 Naive Bayes and Sentiment Classification Daniel Jurafsky, James H. Martin 381 survey 4.76
25 Nuts and bolts of building AI applications using Deep Learning Andrew Ng 811 tutorial 4.76
26 LF-LDA and LF-DMM: Improving Topic Models with Word Embeddings Dat Quoc Nguyen, Richard Billingsley, Lan Du and Mark Johnson 721 library 4.75
27 How (and why) to create a good validation set Rachel Thomas tutorial 4.75
28 Story Cloze Test and ROCStories Corpora Author Unknown 979 corpus 4.75
29 Build It, Break It The Language Edition Emily M. Bender, Hal Daume III, Allyson Ettinger, Harita Kannan, Su... 133 corpus 4.74
30 dimensionality reduction technique -tsne vs. PCA Zenodia Charpy 341 tutorial 4.74
31 Prepositional Phrase Attachment 1 Dragomir Radev 282 lecture 4.74
32 Just Machine Learning Tina Eliassi-Rad 134 tutorial 4.74
33 Basics of Bayesian Statistics Author Unknown 134 survey 4.74
34 Machine learning III Percy Liang 134 lecture 4.74
35 Lecture 1: Introduction Kevin Gimpel 31 lecture 4.74
36 Tutorial on Ensemble Learning Igor Baskin, Gilles Marcou and Alexandre Varnek 107 survey 4.73
37 Comprehension Based LanguageÿModeling David McAllester 211 resource 4.73
38 Decision Trees Avinash Kak 107 tutorial 4.73
39 Solving A Simple Classification Problem with Python - Fruits Lovers's Edition Susan Li 381 resource 4.73
40 Design and Analysis of Machine Learning Experiments Ethem Alpaydın 134 lecture 4.72
41 An Introduction to Statistical Learning with Applications in R Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani 102 lecture 4.72
42 An Introduction to Statistical Learning Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani 102 survey 4.72
43 Statistics Tutorial Harvey Berman 102 tutorial 4.72
44 Language Modeling with N-grams Daniel Jurafsky, James H. Martin 211 survey 4.72
45 Machine Learning: An In-Depth Guide - Model Evaluation, Validation, Complexity, and Improvement Alex Castrounis 711 resource 4.72
46 Supervised Learning Methods k-nearest-neighbors(k-NN) Decisiontrees(Chapter18.3) Neuralnetworks(ANN) Supportvectormachines(SVM) Chuck Dyer 511 lecture 4.72
47 Neural Model for converting Image-to-Markup Yuntian Deng 756 library 4.71
48 The RepEval 2017 Shared Task Sam Bowman, Yoav Goldberg, Felix Hill, Angeliki Lazaridou, Omer Lev... 723 resource 4.71
49 Language Modeling Introduction Marine Carpuat 211 lecture 4.71
50 What does support vector machine (SVM) mean in layman's terms? Akihiro Matsukawa 521 tutorial 4.71